the main class for implementing nested sampling
Parameters : | replicas : list
mc_walker: callable
nproc : int
verbose : bool
iprint : int
cpfile: str
cpfreq: int
cpstart: bool
dispatcher_URI: str
serializer: str
Attributes ———- nreplicas : integer
stepsize : float
max_energies : list
store_all_energies: bool
|
---|
Methods
add_new_replicas(rlist) | add new replicas the the list and keep the list sorted |
adjust_step_size(results) | Adjust the stepsize to keep the acceptance ratio at a good value .. |
collectresults() | |
do_monte_carlo_chain(configs, Emax) | from an initial configuration do a monte carlo walk |
get_starting_configurations(Emax) | return nproc replicas to be used as starting configurations |
get_starting_configurations_from_replicas() | use existing replicas as starting configurations |
one_iteration() | do one iteration of the nested sampling algorithm |
pop_replicas() | remove the replicas with the largest energies and store them in the max_energies array |
sort_replicas() | sorts the replicas in decreasing order of energy |